|
@@ -1,597 +0,0 @@
|
|
|
-//----------------------------------------------------------------------------------------------------
|
|
|
-// ARDUINO MPPT SOLAR CHARGE CONTROLLER (Version-3)
|
|
|
-// Author: Debasish Dutta/deba168
|
|
|
-// www.opengreenenergy.in
|
|
|
-//
|
|
|
-// This code is for an arduino Nano based Solar MPPT charge controller.
|
|
|
-// This code is a modified version of sample code from www.timnolan.com
|
|
|
-// updated 06/21/2015
|
|
|
-//
|
|
|
-// Mods by Aplavins 06/19/2015
|
|
|
-
|
|
|
-//// Specifications : //////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
- //
|
|
|
-// 1.Solar panel power = 50W
|
|
|
- //
|
|
|
-// 2.Rated Battery Voltage= 12V ( lead acid type )
|
|
|
-
|
|
|
-// 3.Maximum current = 5A //
|
|
|
-
|
|
|
-// 4.Maximum load current =10A //
|
|
|
-
|
|
|
-// 5. In put Voltage = Solar panel with Open circuit voltage from 17 to 25V //
|
|
|
-
|
|
|
-///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-#include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
|
|
|
-#include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
|
|
|
-#include <Wire.h>
|
|
|
-
|
|
|
-//----------------------------------------------------------------------------------------------------------
|
|
|
-
|
|
|
-//////// Arduino pins Connections//////////////////////////////////////////////////////////////////////////////////
|
|
|
-
|
|
|
-// A0 - Voltage divider (solar)
|
|
|
-// A1 - ACS 712 Out
|
|
|
-// A2 - Voltage divider (battery)
|
|
|
-// A4 - LCD SDA
|
|
|
-// A5 - LCD SCL
|
|
|
-// D2 - ESP8266 Tx
|
|
|
-// D3 - ESP8266 Rx through the voltage divider
|
|
|
-// D5 - LCD back control button
|
|
|
-// D6 - Load Control
|
|
|
-// D8 - 2104 MOSFET driver SD
|
|
|
-// D9 - 2104 MOSFET driver IN
|
|
|
-// D11- Green LED
|
|
|
-// D12- Yellow LED
|
|
|
-// D13- Red LED
|
|
|
-
|
|
|
-// Full scheatic is given at http://www.instructables.com/files/orig/F9A/LLR8/IAPASVA1/F9ALLR8IAPASVA1.pdf
|
|
|
-
|
|
|
-///////// Definitions /////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
-
|
|
|
-
|
|
|
-#define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
|
|
|
-#define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
|
|
|
-#define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
|
|
|
-#define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
|
|
|
-
|
|
|
-// ACS 712 Current Sensor is used. Current Measured = (5/(1024 *0.185))*ADC - (2.5/0.185)
|
|
|
-
|
|
|
-#define SOL_AMPS_SCALE 0.026393581 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
|
|
|
-#define SOL_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2 // R1=100k and R2=20k
|
|
|
-#define BAT_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get battery volts
|
|
|
-
|
|
|
-#define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
|
|
|
-#define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
|
|
|
-#define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
|
|
|
-#define PWM_MAX 100 // the value for pwm duty cyle 0-100%
|
|
|
-#define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
|
|
|
-#define PWM_START 90 // the value for pwm duty cyle 0-100%
|
|
|
-#define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
|
|
|
-
|
|
|
-#define TRUE 1
|
|
|
-#define FALSE 0
|
|
|
-#define ON TRUE
|
|
|
-#define OFF FALSE
|
|
|
-
|
|
|
-#define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
|
|
|
-#define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
|
|
|
-
|
|
|
-#define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
|
|
|
-
|
|
|
-#define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
|
|
|
-#define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
|
|
|
-#define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
|
|
|
-#define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
|
|
|
-#define BATT_FLOAT 13.60 // battery voltage we want to stop charging at
|
|
|
-#define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
|
|
|
-#define LVD 11.5 //Low voltage disconnect setting for a 12V system
|
|
|
-#define OFF_NUM 9 // number of iterations of off charger state
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-//Defining led pins for indication
|
|
|
-#define LED_RED 11
|
|
|
-#define LED_GREEN 12
|
|
|
-#define LED_YELLOW 13
|
|
|
-//-----------------------------------------------------------------------------------------------------
|
|
|
-// Defining load control pin
|
|
|
-#define LOAD_PIN 6 // pin-2 is used to control the load
|
|
|
-
|
|
|
-//-----------------------------------------------------------------------------------------------------
|
|
|
-// Defining lcd back light pin
|
|
|
-#define BACK_LIGHT_PIN 5 // pin-5 is used to control the lcd back light
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-/////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
|
|
|
-//-------------------------------------------------------------------------------------------------------
|
|
|
-byte solar[8] = //icon for termometer
|
|
|
-{
|
|
|
- 0b11111,
|
|
|
- 0b10101,
|
|
|
- 0b11111,
|
|
|
- 0b10101,
|
|
|
- 0b11111,
|
|
|
- 0b10101,
|
|
|
- 0b11111,
|
|
|
- 0b00000
|
|
|
-};
|
|
|
-
|
|
|
-byte battery[8]=
|
|
|
-{
|
|
|
- 0b01110,
|
|
|
- 0b11011,
|
|
|
- 0b10001,
|
|
|
- 0b10001,
|
|
|
- 0b11111,
|
|
|
- 0b11111,
|
|
|
- 0b11111,
|
|
|
- 0b11111,
|
|
|
-};
|
|
|
-
|
|
|
-byte _PWM [8]=
|
|
|
-{
|
|
|
- 0b11101,
|
|
|
- 0b10101,
|
|
|
- 0b10101,
|
|
|
- 0b10101,
|
|
|
- 0b10101,
|
|
|
- 0b10101,
|
|
|
- 0b10101,
|
|
|
- 0b10111,
|
|
|
-};
|
|
|
-//-------------------------------------------------------------------------------------------------------
|
|
|
-
|
|
|
-// global variables
|
|
|
-
|
|
|
-float sol_amps; // solar amps
|
|
|
-float sol_volts; // solar volts
|
|
|
-float bat_volts; // battery volts
|
|
|
-float sol_watts; // solar watts
|
|
|
-float old_sol_watts = 0; // solar watts from previous time through ppt routine
|
|
|
-unsigned int seconds = 0; // seconds from timer routine
|
|
|
-unsigned int prev_seconds = 0; // seconds value from previous pass
|
|
|
-unsigned int interrupt_counter = 0; // counter for 20us interrrupt
|
|
|
-unsigned long time = 0; // variable to store time the back light control button was pressed in millis
|
|
|
-int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
|
|
|
-int pwm = 0; // pwm duty cycle 0-100%
|
|
|
-int back_light_pin_State = 0; // variable for storing the state of the backlight button
|
|
|
-int load_status = 0; // variable for storing the load output state (for writing to LCD)
|
|
|
-
|
|
|
-enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
|
|
|
-// set the LCD address to 0x27 for a 20 chars 4 line display
|
|
|
-// Set the pins on the I2C chip used for LCD connections:
|
|
|
-// addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
|
|
|
-LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
|
|
|
-
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This routine is automatically called at powerup/reset
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-
|
|
|
-void setup() // run once, when the sketch starts
|
|
|
-{
|
|
|
- pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
|
|
|
- TURN_OFF_MOSFETS; // turn off MOSFET driver chip
|
|
|
- charger_state = off; // start with charger state as off
|
|
|
- pinMode(LED_RED, OUTPUT); // sets the digital pin as output
|
|
|
- pinMode(LED_GREEN, OUTPUT); // sets the digital pin as output
|
|
|
- pinMode(LED_YELLOW, OUTPUT); // sets the digital pin as output
|
|
|
- Timer1.initialize(20); // initialize timer1, and set a 20uS period
|
|
|
- Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
|
|
|
- Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
|
|
|
- Serial.begin(9600); // open the serial port at 38400 bps:
|
|
|
- pwm = PWM_START; // starting value for pwm
|
|
|
- pinMode(BACK_LIGHT_PIN, INPUT); // backlight on button
|
|
|
- pinMode(LOAD_PIN,OUTPUT); // output for the LOAD MOSFET (LOW = on, HIGH = off)
|
|
|
- digitalWrite(LOAD_PIN,HIGH); // default load state is OFF
|
|
|
- lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
|
|
|
- lcd.noBacklight(); // turn off the backlight
|
|
|
- lcd.createChar(1,solar); // turn the bitmap into a character
|
|
|
- lcd.createChar(2,battery); // turn the bitmap into a character
|
|
|
- lcd.createChar(3,_PWM); // turn the bitmap into a character
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// Main loop
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void loop()
|
|
|
-{
|
|
|
- read_data(); // read data from inputs
|
|
|
- run_charger(); // run the charger state machine
|
|
|
- print_data(); // print data
|
|
|
- load_control(); // control the connected load
|
|
|
- led_output(); // led indication
|
|
|
- lcd_display(); // lcd display
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This routine reads and averages the analog inputs for this system, solar volts, solar amps and
|
|
|
-// battery volts.
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-int read_adc(int channel){
|
|
|
-
|
|
|
- int sum = 0;
|
|
|
- int temp;
|
|
|
- int i;
|
|
|
-
|
|
|
- for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
|
|
|
- temp = analogRead(channel); // read the input pin
|
|
|
- sum += temp; // store sum for averaging
|
|
|
- delayMicroseconds(50); // pauses for 50 microseconds
|
|
|
- }
|
|
|
- return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This routine reads all the analog input values for the system. Then it multiplies them by the scale
|
|
|
-// factor to get actual value in volts or amps.
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void read_data(void) {
|
|
|
-
|
|
|
- sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -12.01); //input of solar amps
|
|
|
- sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
|
|
|
- bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
|
|
|
- sol_watts = sol_amps * sol_volts ; //calculations of solar watts
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This is interrupt service routine for Timer1 that occurs every 20uS.
|
|
|
-//
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void callback()
|
|
|
-{
|
|
|
- if (interrupt_counter++ > ONE_SECOND) { // increment interrupt_counter until one second has passed
|
|
|
- interrupt_counter = 0; // reset the counter
|
|
|
- seconds++; // then increment seconds counter
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This routine uses the Timer1.pwm function to set the pwm duty cycle.
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void set_pwm_duty(void) {
|
|
|
-
|
|
|
- if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
|
|
|
- pwm = PWM_MAX;
|
|
|
- }
|
|
|
- else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
|
|
|
- pwm = PWM_MIN;
|
|
|
- }
|
|
|
- if (pwm < PWM_MAX) {
|
|
|
- Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
|
|
|
- //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
|
|
|
- }
|
|
|
- else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
|
|
|
- Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 20); // keep switching so set duty cycle at 99.9%
|
|
|
- //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This routine is the charger state machine. It has four states on, off, bulk and float.
|
|
|
-// It's called once each time through the main loop to see what state the charger should be in.
|
|
|
-// The battery charger can be in one of the following four states:
|
|
|
-//
|
|
|
-// On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
|
|
|
-// watts input is too low for the bulk charging state but not low enough to go into the off state.
|
|
|
-// In this state we just set the pwm = 99.9% to get the most of low amount of power available.
|
|
|
-
|
|
|
-// Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
|
|
|
-// charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
|
|
|
-// of current that the solar panels are generating into the battery.
|
|
|
-
|
|
|
-// Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
|
|
|
-// bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
|
|
|
-// at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
|
|
|
-// voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
|
|
|
-// into the bulk charging mode.
|
|
|
-
|
|
|
-// Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
|
|
|
-// state when there is no more power being generated by the solar panels. The MOSFETs are turned
|
|
|
-// off in this state so that power from the battery doesn't leak back into the solar panel.
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void run_charger(void) {
|
|
|
-
|
|
|
- static int off_count = OFF_NUM;
|
|
|
-
|
|
|
- switch (charger_state) {
|
|
|
- case on:
|
|
|
- if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
|
|
|
- charger_state = off; // the minimum solar watts then
|
|
|
- off_count = OFF_NUM; // go to the charger off state
|
|
|
- TURN_OFF_MOSFETS;
|
|
|
- }
|
|
|
- else if (bat_volts > (BATT_FLOAT - 0.1)) { // else if the battery voltage has gotten above the float
|
|
|
- charger_state = bat_float; // battery float voltage go to the charger battery float state
|
|
|
- }
|
|
|
- else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
|
|
|
- pwm = PWM_MAX; // it means there is not much power being generated by the solar panel
|
|
|
- set_pwm_duty(); // so we just set the pwm = 100% so we can get as much of this power as possible
|
|
|
- } // and stay in the charger on state
|
|
|
- else {
|
|
|
- pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; // else if we are making more power than low solar watts figure out what the pwm
|
|
|
- charger_state = bulk; // value should be and change the charger to bulk state
|
|
|
- }
|
|
|
- break;
|
|
|
- case bulk:
|
|
|
- if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
|
|
|
- charger_state = off; // the minimum solar watts then it is getting dark so
|
|
|
- off_count = OFF_NUM; // go to the charger off state
|
|
|
- TURN_OFF_MOSFETS;
|
|
|
- }
|
|
|
- else if (bat_volts > BATT_FLOAT) { // else if the battery voltage has gotten above the float
|
|
|
- charger_state = bat_float; // battery float voltage go to the charger battery float state
|
|
|
- }
|
|
|
- else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
|
|
|
- charger_state = on; // it means there is not much power being generated by the solar panel
|
|
|
- TURN_ON_MOSFETS; // so go to charger on state
|
|
|
- }
|
|
|
- else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
|
|
|
- if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
|
|
|
- delta = -delta; // delta to make pwm increase or decrease to maximize watts
|
|
|
- }
|
|
|
- pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
|
|
|
- old_sol_watts = sol_watts; // load old_watts with current watts value for next time
|
|
|
- set_pwm_duty(); // set pwm duty cycle to pwm value
|
|
|
- }
|
|
|
- break;
|
|
|
- case bat_float:
|
|
|
-
|
|
|
- if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
|
|
|
- charger_state = off; // the minimum solar watts then it is getting dark so
|
|
|
- off_count = OFF_NUM; // go to the charger off state
|
|
|
- TURN_OFF_MOSFETS;
|
|
|
- set_pwm_duty();
|
|
|
- }
|
|
|
- else if (bat_volts > BATT_FLOAT) { // If we've charged the battery abovethe float voltage
|
|
|
- TURN_OFF_MOSFETS; // turn off MOSFETs instead of modiflying duty cycle
|
|
|
- pwm = PWM_MAX; // the charger is less efficient at 99% duty cycle
|
|
|
- set_pwm_duty(); // write the PWM
|
|
|
- }
|
|
|
- else if (bat_volts < BATT_FLOAT) { // else if the battery voltage is less than the float voltage - 0.1
|
|
|
- pwm = PWM_MAX;
|
|
|
- set_pwm_duty(); // start charging again
|
|
|
- TURN_ON_MOSFETS;
|
|
|
- if (bat_volts < (BATT_FLOAT - 0.1)) { // if the voltage drops because of added load,
|
|
|
- charger_state = bulk; // switch back into bulk state to keep the voltage up
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
- case off: // when we jump into the charger off state, off_count is set with OFF_NUM
|
|
|
- TURN_OFF_MOSFETS;
|
|
|
- if (off_count > 0) { // this means that we run through the off state OFF_NUM of times with out doing
|
|
|
- off_count--; // anything, this is to allow the battery voltage to settle down to see if the
|
|
|
- } // battery has been disconnected
|
|
|
- else if ((bat_volts > BATT_FLOAT) && (sol_volts > bat_volts)) {
|
|
|
- TURN_ON_MOSFETS;
|
|
|
- charger_state = bat_float; // if battery voltage is still high and solar volts are high
|
|
|
- }
|
|
|
- else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < BATT_FLOAT) && (sol_volts > bat_volts)) {
|
|
|
- TURN_ON_MOSFETS;
|
|
|
- charger_state = bulk;
|
|
|
- }
|
|
|
- break;
|
|
|
- default:
|
|
|
- TURN_OFF_MOSFETS;
|
|
|
- break;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-//----------------------------------------------------------------------------------------------------------------------
|
|
|
-/////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
|
|
|
-//----------------------------------------------------------------------------------------------------------------------
|
|
|
-
|
|
|
-void load_control(){
|
|
|
- if ((sol_watts < MIN_SOL_WATTS) && (bat_volts > LVD)){ // If the panel isn't producing, it's probably night
|
|
|
- digitalWrite(LOAD_PIN, LOW); // turn the load on
|
|
|
- load_status = 1; // record that the load is on
|
|
|
- }
|
|
|
- else{ // If the panel is producing, it's day time
|
|
|
- digitalWrite(LOAD_PIN, HIGH); // turn the load off
|
|
|
- load_status = 0; // record that the load is off
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-// This routine prints all the data out to the serial port.
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void print_data(void) {
|
|
|
-
|
|
|
- Serial.print(seconds,DEC);
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("Charging = ");
|
|
|
- if (charger_state == on) Serial.print("on ");
|
|
|
- else if (charger_state == off) Serial.print("off ");
|
|
|
- else if (charger_state == bulk) Serial.print("bulk ");
|
|
|
- else if (charger_state == bat_float) Serial.print("float");
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("pwm = ");
|
|
|
- Serial.print(pwm,DEC);
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("Current (panel) = ");
|
|
|
- Serial.print(sol_amps);
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("Voltage (panel) = ");
|
|
|
- Serial.print(sol_volts);
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("Power (panel) = ");
|
|
|
- Serial.print(sol_volts);
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("Battery Voltage = ");
|
|
|
- Serial.print(bat_volts);
|
|
|
- Serial.print(" ");
|
|
|
-
|
|
|
- Serial.print("\n\r");
|
|
|
- //delay(1000);
|
|
|
-}
|
|
|
-
|
|
|
-//-------------------------------------------------------------------------------------------------
|
|
|
-//---------------------------------Led Indication--------------------------------------------------
|
|
|
-//-------------------------------------------------------------------------------------------------
|
|
|
-
|
|
|
-void led_output(void)
|
|
|
-{
|
|
|
- if(bat_volts > 14.1 )
|
|
|
- {
|
|
|
- leds_off_all();
|
|
|
- digitalWrite(LED_YELLOW, HIGH);
|
|
|
- }
|
|
|
- else if(bat_volts > 11.9 && bat_volts < 14.1)
|
|
|
- {
|
|
|
- leds_off_all();
|
|
|
- digitalWrite(LED_GREEN, HIGH);
|
|
|
- }
|
|
|
- else if(bat_volts < 11.8)
|
|
|
- {
|
|
|
- leds_off_all;
|
|
|
- digitalWrite(LED_RED, HIGH);
|
|
|
- }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-//
|
|
|
-// This function is used to turn all the leds off
|
|
|
-//
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-void leds_off_all(void)
|
|
|
-{
|
|
|
- digitalWrite(LED_GREEN, LOW);
|
|
|
- digitalWrite(LED_RED, LOW);
|
|
|
- digitalWrite(LED_YELLOW, LOW);
|
|
|
-}
|
|
|
-
|
|
|
-//------------------------------------------------------------------------------------------------------
|
|
|
-//-------------------------- LCD DISPLAY --------------------------------------------------------------
|
|
|
-//-------------------------------------------------------------------------------------------------------
|
|
|
-void lcd_display()
|
|
|
-{
|
|
|
- back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
|
|
|
- if (back_light_pin_State == HIGH)
|
|
|
- {
|
|
|
- time = millis(); // If any of the buttons are pressed, save the time in millis to "time"
|
|
|
- }
|
|
|
-
|
|
|
- lcd.setCursor(0, 0);
|
|
|
- lcd.print("SOL");
|
|
|
- lcd.setCursor(4, 0);
|
|
|
- lcd.write(1);
|
|
|
- lcd.setCursor(0, 1);
|
|
|
- lcd.print(sol_volts);
|
|
|
- lcd.print("V");
|
|
|
- lcd.setCursor(0, 2);
|
|
|
- lcd.print(sol_amps);
|
|
|
- lcd.print("A");
|
|
|
- lcd.setCursor(0, 3);
|
|
|
- lcd.print(sol_watts);
|
|
|
- lcd.print("W ");
|
|
|
- lcd.setCursor(8, 0);
|
|
|
- lcd.print("BAT");
|
|
|
- lcd.setCursor(12, 0);
|
|
|
- lcd.write(2);
|
|
|
- lcd.setCursor(8, 1);
|
|
|
- lcd.print(bat_volts);
|
|
|
- lcd.setCursor(8,2);
|
|
|
-
|
|
|
- if (charger_state == on)
|
|
|
- {
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(8,2);
|
|
|
- lcd.print("on");
|
|
|
- }
|
|
|
- else if (charger_state == off)
|
|
|
- {
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(8,2);
|
|
|
- lcd.print("off");
|
|
|
- }
|
|
|
- else if (charger_state == bulk)
|
|
|
- {
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(8,2);
|
|
|
- lcd.print("bulk");
|
|
|
- }
|
|
|
- else if (charger_state == bat_float)
|
|
|
- {
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(8,2);
|
|
|
- lcd.print("float");
|
|
|
- }
|
|
|
-
|
|
|
- //-----------------------------------------------------------
|
|
|
- //--------------------Battery State Of Charge ---------------
|
|
|
- //-----------------------------------------------------------
|
|
|
- lcd.setCursor(8,3);
|
|
|
- if ( bat_volts >= 12.7)
|
|
|
- lcd.print( "100%");
|
|
|
- else if (bat_volts >= 12.5 && bat_volts < 12.7)
|
|
|
- lcd.print( "90%");
|
|
|
- else if (bat_volts >= 12.42 && bat_volts < 12.5)
|
|
|
- lcd.print( "80%");
|
|
|
- else if (bat_volts >= 12.32 && bat_volts < 12.42)
|
|
|
- lcd.print( "70%");
|
|
|
- else if (bat_volts >= 12.2 && bat_volts < 12.32)
|
|
|
- lcd.print( "60%");
|
|
|
- else if (bat_volts >= 12.06 && bat_volts < 12.2)
|
|
|
- lcd.print( "50%");
|
|
|
- else if (bat_volts >= 11.90 && bat_volts < 12.06)
|
|
|
- lcd.print( "40%");
|
|
|
- else if (bat_volts >= 11.75 && bat_volts < 11.90)
|
|
|
- lcd.print( "30%");
|
|
|
- else if (bat_volts >= 11.58 && bat_volts < 11.75)
|
|
|
- lcd.print( "20%");
|
|
|
- else if (bat_volts >= 11.31 && bat_volts < 11.58)
|
|
|
- lcd.print( "10%");
|
|
|
- else if (bat_volts < 11.3)
|
|
|
- lcd.print( "0%");
|
|
|
-
|
|
|
-//---------------------------------------------------------------------
|
|
|
-//------------------Duty Cycle-----------------------------------------
|
|
|
-//---------------------------------------------------------------------
|
|
|
- lcd.setCursor(15,0);
|
|
|
- lcd.print("PWM");
|
|
|
- lcd.setCursor(19,0);
|
|
|
- lcd.write(3);
|
|
|
- lcd.setCursor(15,1);
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(15,1);
|
|
|
- lcd.print(pwm);
|
|
|
- lcd.print("%");
|
|
|
- //----------------------------------------------------------------------
|
|
|
- //------------------------Load Status-----------------------------------
|
|
|
- //----------------------------------------------------------------------
|
|
|
- lcd.setCursor(15,2);
|
|
|
- lcd.print("Load");
|
|
|
- lcd.setCursor(15,3);
|
|
|
- if (load_status == 1)
|
|
|
- {
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(15,3);
|
|
|
- lcd.print("On");
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- lcd.print(" ");
|
|
|
- lcd.setCursor(15,3);
|
|
|
- lcd.print("Off");
|
|
|
- }
|
|
|
- backLight_timer(); // call the backlight timer function in every loop
|
|
|
-}
|
|
|
-
|
|
|
-void backLight_timer(){
|
|
|
- if((millis() - time) <= 15000) // if it's been less than the 15 secs, turn the backlight on
|
|
|
- lcd.backlight(); // finish with backlight on
|
|
|
- else
|
|
|
- lcd.noBacklight(); // if it's been more than 15 secs, turn the backlight off
|
|
|
-}
|