MPPT_Code_ESP8266.ino 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718
  1. //----------------------------------------------------------------------------------------------------
  2. // ARDUINO MPPT SOLAR CHARGE CONTROLLER (Version-3)
  3. // Author: Debasish Dutta/deba168
  4. // www.opengreenenergy.in
  5. //
  6. // This code is for an arduino Nano based Solar MPPT charge controller.
  7. // This code is a modified version of sample code from www.timnolan.com
  8. // updated 21/06/2015
  9. //
  10. // Mods by Aplavins 06/19/2015
  11. //// Specifications : //////////////////////////////////////////////////////////////////////////////////////////////////////
  12. //
  13. // 1.Solar panel power = 50W
  14. //
  15. // 2.Rated Battery Voltage= 12V ( lead acid type )
  16. // 3.Maximum current = 5A //
  17. // 4.Maximum load current =10A //
  18. // 5. In put Voltage = Solar panel with Open circuit voltage from 17 to 25V //
  19. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  20. #include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
  21. #include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
  22. #include <Wire.h>
  23. #include <SoftwareSerial.h> // using the Software Serial library Ref : http://www.arduino.cc/en/Reference/SoftwareSerialConstructor
  24. //----------------------------------------------------------------------------------------------------------
  25. //////// Arduino pins Connections//////////////////////////////////////////////////////////////////////////////////
  26. // A0 - Voltage divider (solar)
  27. // A1 - ACS 712 Out
  28. // A2 - Voltage divider (battery)
  29. // A4 - LCD SDA
  30. // A5 - LCD SCL
  31. // D2 - ESP8266 Tx
  32. // D3 - ESP8266 Rx through the voltage divider
  33. // D5 - LCD back control button
  34. // D6 - Load Control
  35. // D8 - 2104 MOSFET driver SD
  36. // D9 - 2104 MOSFET driver IN
  37. // D11- Green LED
  38. // D12- Yellow LED
  39. // D13- Red LED
  40. // Full scheatic is given at http://www.instructables.com/files/orig/F9A/LLR8/IAPASVA1/F9ALLR8IAPASVA1.pdf
  41. ///////// Definitions /////////////////////////////////////////////////////////////////////////////////////////////////
  42. // Turn this on to use the ESP8266 chip. If you set this to 0, the periodic updates will not happen
  43. #define ENABLE_DATALOGGER 1
  44. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  45. #define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
  46. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  47. #define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
  48. #define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
  49. // ACS 712 Current Sensor is used. Current Measured = (5/(1024 *0.185))*ADC - (2.5/0.185)
  50. #define SOL_AMPS_SCALE 0.026393581 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
  51. #define SOL_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2 // R1=100k and R2=20k
  52. #define BAT_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get battery volts
  53. #define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
  54. #define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
  55. #define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
  56. #define PWM_MAX 100 // the value for pwm duty cyle 0-100%
  57. #define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
  58. #define PWM_START 90 // the value for pwm duty cyle 0-100%
  59. #define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
  60. #define TRUE 1
  61. #define FALSE 0
  62. #define ON TRUE
  63. #define OFF FALSE
  64. #define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
  65. #define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
  66. #define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
  67. #define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
  68. #define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
  69. #define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
  70. #define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
  71. #define BATT_FLOAT 13.60 // battery voltage we want to stop charging at
  72. #define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
  73. #define LVD 11.5 //Low voltage disconnect setting for a 12V system
  74. #define OFF_NUM 9 // number of iterations of off charger state
  75. //------------------------------------------------------------------------------------------------------
  76. //Defining led pins for indication
  77. #define LED_RED 11
  78. #define LED_GREEN 12
  79. #define LED_YELLOW 13
  80. //-----------------------------------------------------------------------------------------------------
  81. // Defining load control pin
  82. #define LOAD_PIN 6 // pin-2 is used to control the load
  83. //-----------------------------------------------------------------------------------------------------
  84. // Defining lcd back light pin
  85. #define BACK_LIGHT_PIN 5 // pin-5 is used to control the lcd back light
  86. // ---------------------------For ESP8266--------------------------------------------------------------
  87. // replace with your channel's thingspeak API key
  88. String apiKey = "DPK8RMTFY2B1XCAF";
  89. // connect 2 to TX of Serial USB
  90. // connect 3 to RX of serial USB
  91. SoftwareSerial ser(2,3); // RX, TX
  92. //---------------------------------------------------------------------------------------------------------
  93. //------------------------------------------------------------------------------------------------------
  94. /////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
  95. //-------------------------------------------------------------------------------------------------------
  96. byte battery_icons[6][8]=
  97. {{
  98. 0b01110,
  99. 0b11011,
  100. 0b10001,
  101. 0b10001,
  102. 0b10001,
  103. 0b10001,
  104. 0b10001,
  105. 0b11111,
  106. },
  107. {
  108. 0b01110,
  109. 0b11011,
  110. 0b10001,
  111. 0b10001,
  112. 0b10001,
  113. 0b10001,
  114. 0b11111,
  115. 0b11111,
  116. },
  117. {
  118. 0b01110,
  119. 0b11011,
  120. 0b10001,
  121. 0b10001,
  122. 0b10001,
  123. 0b11111,
  124. 0b11111,
  125. 0b11111,
  126. },
  127. {
  128. 0b01110,
  129. 0b11011,
  130. 0b10001,
  131. 0b11111,
  132. 0b11111,
  133. 0b11111,
  134. 0b11111,
  135. 0b11111,
  136. },
  137. {
  138. 0b01110,
  139. 0b11011,
  140. 0b11111,
  141. 0b11111,
  142. 0b11111,
  143. 0b11111,
  144. 0b11111,
  145. 0b11111,
  146. },
  147. {
  148. 0b01110,
  149. 0b11111,
  150. 0b11111,
  151. 0b11111,
  152. 0b11111,
  153. 0b11111,
  154. 0b11111,
  155. 0b11111,
  156. }};
  157. #define SOLAR_ICON 6
  158. byte solar_icon[8] = //icon for termometer
  159. {
  160. 0b11111,
  161. 0b10101,
  162. 0b11111,
  163. 0b10101,
  164. 0b11111,
  165. 0b10101,
  166. 0b11111,
  167. 0b00000
  168. };
  169. #define PWM_ICON 7
  170. byte _PWM_icon[8]=
  171. {
  172. 0b11101,
  173. 0b10101,
  174. 0b10101,
  175. 0b10101,
  176. 0b10101,
  177. 0b10101,
  178. 0b10101,
  179. 0b10111,
  180. };
  181. byte backslash_char[8] {
  182. 0b10000,
  183. 0b10000,
  184. 0b01000,
  185. 0b01000,
  186. 0b00100,
  187. 0b00100,
  188. 0b00010,
  189. 0b00010,
  190. };
  191. //-------------------------------------------------------------------------------------------------------
  192. // global variables
  193. float sol_amps; // solar amps
  194. float sol_volts; // solar volts
  195. float bat_volts; // battery volts
  196. float sol_watts; // solar watts
  197. float old_sol_watts = 0; // solar watts from previous time through ppt routine
  198. unsigned int seconds = 0; // seconds from timer routine
  199. unsigned int prev_seconds = 0; // seconds value from previous pass
  200. unsigned int interrupt_counter = 0; // counter for 20us interrrupt
  201. unsigned long time = 0; // variable to store time the back light control button was pressed in millis
  202. int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
  203. int pwm = 0; // pwm duty cycle 0-100%
  204. int back_light_pin_State = 0; // variable for storing the state of the backlight button
  205. int load_status = 0; // variable for storing the load output state (for writing to LCD)
  206. enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
  207. // set the LCD address to 0x27 for a 20 chars 4 line display
  208. // Set the pins on the I2C chip used for LCD connections:
  209. // addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
  210. LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
  211. //------------------------------------------------------------------------------------------------------
  212. // This routine is automatically called at powerup/reset
  213. //------------------------------------------------------------------------------------------------------
  214. void setup() // run once, when the sketch starts
  215. {
  216. pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
  217. TURN_OFF_MOSFETS; // turn off MOSFET driver chip
  218. charger_state = off; // start with charger state as off
  219. lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
  220. // create the LCD special characters. Characters 0-5 are the various battery fullness icons
  221. // icon 7 is for the PWM icon, and icon 8 is for the solar array
  222. lcd.backlight();
  223. for (int batchar = 0; batchar < 6; ++batchar) {
  224. lcd.createChar(batchar, battery_icons[batchar]);
  225. }
  226. lcd.createChar(PWM_ICON,_PWM_icon);
  227. lcd.createChar(SOLAR_ICON,solar_icon);
  228. lcd.createChar('\\', backslash_char);
  229. pinMode(LED_RED, OUTPUT);
  230. pinMode(LED_GREEN, OUTPUT);
  231. pinMode(LED_YELLOW, OUTPUT);
  232. Timer1.initialize(20); // initialize timer1, and set a 20uS period
  233. Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
  234. Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
  235. Serial.begin(9600); // open the serial port at 9600 bps:
  236. ser.begin(9600); // enable software serial
  237. ser.println("AT+RST"); // reset ESP8266
  238. pwm = PWM_START; //starting value for pwm
  239. pinMode(BACK_LIGHT_PIN, INPUT);
  240. pinMode(LOAD_PIN,OUTPUT);
  241. digitalWrite(LOAD_PIN,LOW); // default load state is OFF
  242. digitalWrite(BACK_LIGHT_PIN,LOW); // default LCd back light is OFF
  243. // display the constant stuff on the LCD
  244. lcd.setCursor(0, 0);
  245. lcd.print("SOL");
  246. lcd.setCursor(4, 0);
  247. lcd.write(SOLAR_ICON);
  248. lcd.setCursor(8, 0);
  249. lcd.print("BAT");
  250. }
  251. //------------------------------------------------------------------------------------------------------
  252. // Main loop
  253. //------------------------------------------------------------------------------------------------------
  254. void loop()
  255. {
  256. read_data(); // read data from inputs
  257. run_charger(); // run the charger state machine
  258. print_data(); // print data
  259. load_control(); // control the connected load
  260. led_output(); // led indication
  261. lcd_display(); // lcd display
  262. #if ENABLE_DATALOGGER
  263. wifi_datalog(); // sends data to thingspeak
  264. #endif
  265. }
  266. //------------------------------------------------------------------------------------------------------
  267. // This routine reads and averages the analog inputs for this system, solar volts, solar amps and
  268. // battery volts.
  269. //------------------------------------------------------------------------------------------------------
  270. int read_adc(int channel){
  271. int sum = 0;
  272. int temp;
  273. int i;
  274. for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
  275. temp = analogRead(channel); // read the input pin
  276. sum += temp; // store sum for averaging
  277. delayMicroseconds(50); // pauses for 50 microseconds
  278. }
  279. return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
  280. }
  281. //------------------------------------------------------------------------------------------------------
  282. // This routine reads all the analog input values for the system. Then it multiplies them by the scale
  283. // factor to get actual value in volts or amps.
  284. //------------------------------------------------------------------------------------------------------
  285. void read_data(void) {
  286. sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -12.01); //input of solar amps
  287. sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
  288. bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
  289. sol_watts = sol_amps * sol_volts ; //calculations of solar watts
  290. }
  291. //------------------------------------------------------------------------------------------------------
  292. // This is interrupt service routine for Timer1 that occurs every 20uS.
  293. //
  294. //------------------------------------------------------------------------------------------------------
  295. void callback()
  296. {
  297. if (interrupt_counter++ > ONE_SECOND) { // increment interrupt_counter until one second has passed
  298. interrupt_counter = 0; // reset the counter
  299. seconds++; // then increment seconds counter
  300. }
  301. }
  302. //------------------------------------------------------------------------------------------------------
  303. // This routine uses the Timer1.pwm function to set the pwm duty cycle.
  304. //------------------------------------------------------------------------------------------------------
  305. void set_pwm_duty(void) {
  306. if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
  307. pwm = PWM_MAX;
  308. }
  309. else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
  310. pwm = PWM_MIN;
  311. }
  312. if (pwm < PWM_MAX) {
  313. Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
  314. //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
  315. }
  316. else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
  317. Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 20); // keep switching so set duty cycle at 99.9%
  318. //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
  319. }
  320. }
  321. //------------------------------------------------------------------------------------------------------
  322. // This routine is the charger state machine. It has four states on, off, bulk and float.
  323. // It's called once each time through the main loop to see what state the charger should be in.
  324. // The battery charger can be in one of the following four states:
  325. //
  326. // On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
  327. // watts input is too low for the bulk charging state but not low enough to go into the off state.
  328. // In this state we just set the pwm = 99.9% to get the most of low amount of power available.
  329. // Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
  330. // charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
  331. // of current that the solar panels are generating into the battery.
  332. // Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
  333. // bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
  334. // at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
  335. // voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
  336. // into the bulk charging mode.
  337. // Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
  338. // state when there is no more power being generated by the solar panels. The MOSFETs are turned
  339. // off in this state so that power from the battery doesn't leak back into the solar panel.
  340. //------------------------------------------------------------------------------------------------------
  341. void run_charger(void) {
  342. static int off_count = OFF_NUM;
  343. switch (charger_state) {
  344. case on:
  345. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  346. charger_state = off; // the minimum solar watts then
  347. off_count = OFF_NUM; // go to the charger off state
  348. TURN_OFF_MOSFETS;
  349. }
  350. else if (bat_volts > (BATT_FLOAT - 0.1)) { // else if the battery voltage has gotten above the float
  351. charger_state = bat_float; // battery float voltage go to the charger battery float state
  352. }
  353. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  354. pwm = PWM_MAX; // it means there is not much power being generated by the solar panel
  355. set_pwm_duty(); // so we just set the pwm = 100% so we can get as much of this power as possible
  356. } // and stay in the charger on state
  357. else {
  358. pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; // else if we are making more power than low solar watts figure out what the pwm
  359. charger_state = bulk; // value should be and change the charger to bulk state
  360. }
  361. break;
  362. case bulk:
  363. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  364. charger_state = off; // the minimum solar watts then it is getting dark so
  365. off_count = OFF_NUM; // go to the charger off state
  366. TURN_OFF_MOSFETS;
  367. }
  368. else if (bat_volts > BATT_FLOAT) { // else if the battery voltage has gotten above the float
  369. charger_state = bat_float; // battery float voltage go to the charger battery float state
  370. }
  371. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  372. charger_state = on; // it means there is not much power being generated by the solar panel
  373. TURN_ON_MOSFETS; // so go to charger on state
  374. }
  375. else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
  376. if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
  377. delta = -delta; // delta to make pwm increase or decrease to maximize watts
  378. }
  379. pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
  380. old_sol_watts = sol_watts; // load old_watts with current watts value for next time
  381. set_pwm_duty(); // set pwm duty cycle to pwm value
  382. }
  383. break;
  384. case bat_float:
  385. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  386. charger_state = off; // the minimum solar watts then it is getting dark so
  387. off_count = OFF_NUM; // go to the charger off state
  388. TURN_OFF_MOSFETS;
  389. set_pwm_duty();
  390. }
  391. else if (bat_volts > BATT_FLOAT) { // If we've charged the battery abovethe float voltage
  392. TURN_OFF_MOSFETS; // turn off MOSFETs instead of modiflying duty cycle
  393. pwm = PWM_MAX; // the charger is less efficient at 99% duty cycle
  394. set_pwm_duty(); // write the PWM
  395. }
  396. else if (bat_volts < BATT_FLOAT) { // else if the battery voltage is less than the float voltage - 0.1
  397. pwm = PWM_MAX;
  398. set_pwm_duty(); // start charging again
  399. TURN_ON_MOSFETS;
  400. if (bat_volts < (BATT_FLOAT - 0.1)) { // if the voltage drops because of added load,
  401. charger_state = bulk; // switch back into bulk state to keep the voltage up
  402. }
  403. }
  404. break;
  405. case off: // when we jump into the charger off state, off_count is set with OFF_NUM
  406. TURN_OFF_MOSFETS;
  407. if (off_count > 0) { // this means that we run through the off state OFF_NUM of times with out doing
  408. off_count--; // anything, this is to allow the battery voltage to settle down to see if the
  409. } // battery has been disconnected
  410. else if ((bat_volts > BATT_FLOAT) && (sol_volts > bat_volts)) {
  411. charger_state = bat_float; // if battery voltage is still high and solar volts are high
  412. TURN_ON_MOSFETS;
  413. }
  414. else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < BATT_FLOAT) && (sol_volts > bat_volts)) {
  415. charger_state = bulk;
  416. TURN_ON_MOSFETS;
  417. }
  418. break;
  419. default:
  420. TURN_OFF_MOSFETS;
  421. break;
  422. }
  423. }
  424. //----------------------------------------------------------------------------------------------------------------------
  425. /////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
  426. //----------------------------------------------------------------------------------------------------------------------
  427. void load_control(){
  428. if ((sol_watts < MIN_SOL_WATTS) && (bat_volts > LVD)){ // If the panel isn't producing, it's probably night
  429. digitalWrite(LOAD_PIN, LOW); // turn the load on
  430. load_status = 1; // record that the load is on
  431. }
  432. else{ // If the panel is producing, it's day time
  433. digitalWrite(LOAD_PIN, HIGH); // turn the load off
  434. load_status = 0; // record that the load is off
  435. }
  436. }
  437. //------------------------------------------------------------------------------------------------------
  438. // This routine prints all the data out to the serial port.
  439. //------------------------------------------------------------------------------------------------------
  440. void print_data(void) {
  441. Serial.print(seconds,DEC);
  442. Serial.print(" ");
  443. Serial.print("Charging = ");
  444. if (charger_state == on) Serial.print("on ");
  445. else if (charger_state == off) Serial.print("off ");
  446. else if (charger_state == bulk) Serial.print("bulk ");
  447. else if (charger_state == bat_float) Serial.print("float");
  448. Serial.print(" ");
  449. Serial.print("pwm = ");
  450. Serial.print(pwm,DEC);
  451. Serial.print(" ");
  452. Serial.print("Current (panel) = ");
  453. Serial.print(sol_amps);
  454. Serial.print(" ");
  455. Serial.print("Voltage (panel) = ");
  456. Serial.print(sol_volts);
  457. Serial.print(" ");
  458. Serial.print("Power (panel) = ");
  459. Serial.print(sol_volts);
  460. Serial.print(" ");
  461. Serial.print("Battery Voltage = ");
  462. Serial.print(bat_volts);
  463. Serial.print(" ");
  464. Serial.print("\n\r");
  465. //delay(1000);
  466. }
  467. //-------------------------------------------------------------------------------------------------
  468. //---------------------------------Led Indication--------------------------------------------------
  469. //-------------------------------------------------------------------------------------------------
  470. // light an individual LED
  471. // we remember which one was on before in last_lit and turn it off if different
  472. void light_led(char pin)
  473. {
  474. static char last_lit;
  475. if (last_lit == pin)
  476. return;
  477. if (last_lit != 0)
  478. digitalWrite(last_lit, LOW);
  479. digitalWrite(pin, HIGH);
  480. last_lit = pin;
  481. }
  482. // display the current state via LED as follows:
  483. // YELLOW means overvoltage (over 14.1 volts)
  484. // RED means undervoltage (under 11.9 volts)
  485. // GREEN is between 11.9 and 14.1 volts
  486. void led_output(void)
  487. {
  488. static char last_lit;
  489. if(bat_volts > 14.1 )
  490. light_led(LED_YELLOW);
  491. else if(bat_volts > 11.9)
  492. light_led(LED_GREEN);
  493. else
  494. light_led(LED_RED);
  495. }
  496. //------------------------------------------------------------------------------------------------------
  497. //-------------------------- LCD DISPLAY --------------------------------------------------------------
  498. //-------------------------------------------------------------------------------------------------------
  499. void lcd_display()
  500. {
  501. static bool current_backlight_state = -1;
  502. back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
  503. if (current_backlight_state != back_light_pin_State) {
  504. current_backlight_state = back_light_pin_State;
  505. if (back_light_pin_State == HIGH)
  506. lcd.backlight();// finish with backlight on
  507. else
  508. lcd.noBacklight();
  509. }
  510. if (back_light_pin_State == HIGH)
  511. {
  512. time = millis(); // If any of the buttons are pressed, save the time in millis to "time"
  513. }
  514. lcd.setCursor(0, 1);
  515. lcd.print(sol_volts);
  516. lcd.print("V ");
  517. lcd.setCursor(0, 2);
  518. lcd.print(sol_amps);
  519. lcd.print("A");
  520. lcd.setCursor(0, 3);
  521. lcd.print(sol_watts);
  522. lcd.print("W ");
  523. lcd.setCursor(8, 1);
  524. lcd.print(bat_volts);
  525. lcd.setCursor(8,2);
  526. if (charger_state == on)
  527. lcd.print("on ");
  528. else if (charger_state == off)
  529. lcd.print("off ");
  530. else if (charger_state == bulk)
  531. lcd.print("bulk ");
  532. else if (charger_state == bat_float)
  533. {
  534. lcd.print(" ");
  535. lcd.setCursor(8,2);
  536. lcd.print("float");
  537. }
  538. //-----------------------------------------------------------
  539. //--------------------Battery State Of Charge ---------------
  540. //-----------------------------------------------------------
  541. int pct = 100.0*(bat_volts - 11.3)/(12.7 - 11.3);
  542. if (pct < 0)
  543. pct = 0;
  544. else if (pct > 100)
  545. pct = 100;
  546. lcd.setCursor(12,0);
  547. lcd.print((char)(pct*5/100));
  548. lcd.setCursor(8,3);
  549. pct = pct - (pct%10);
  550. lcd.print(pct);
  551. lcd.print("% ");
  552. //---------------------------------------------------------------------
  553. //------------------Duty Cycle-----------------------------------------
  554. //---------------------------------------------------------------------
  555. lcd.setCursor(15,0);
  556. lcd.print("PWM");
  557. lcd.setCursor(19,0);
  558. lcd.write(PWM_ICON);
  559. lcd.setCursor(15,1);
  560. lcd.print(" ");
  561. lcd.setCursor(15,1);
  562. lcd.print(pwm);
  563. lcd.print("% ");
  564. //----------------------------------------------------------------------
  565. //------------------------Load Status-----------------------------------
  566. //----------------------------------------------------------------------
  567. lcd.setCursor(15,2);
  568. lcd.print("Load");
  569. lcd.setCursor(15,3);
  570. if (load_status == 1)
  571. {
  572. lcd.print("On ");
  573. }
  574. else
  575. {
  576. lcd.print("Off ");
  577. }
  578. spinner();
  579. backLight_timer(); // call the backlight timer function in every loop
  580. }
  581. void backLight_timer(){
  582. if((millis() - time) <= 15000) // if it's been less than the 15 secs, turn the backlight on
  583. lcd.backlight(); // finish with backlight on
  584. else
  585. lcd.noBacklight(); // if it's been more than 15 secs, turn the backlight off
  586. }
  587. void spinner(void) {
  588. static int cspinner;
  589. static char spinner_chars[] = { '*','*', '*', ' ', ' '};
  590. cspinner++;
  591. lcd.print(spinner_chars[cspinner%sizeof(spinner_chars)]);
  592. }
  593. //-------------------------------------------------------------------------
  594. //----------------------------- ESP8266 WiFi ------------------------------
  595. //--------------------------Plot System data on thingspeak.com-------------
  596. //-------------------------------------------------------------------------
  597. void wifi_datalog()
  598. {
  599. // thingspeak needs 15 sec delay between updates
  600. static int lastlogged;
  601. if ( seconds - lastlogged < 16 )
  602. return;
  603. lastlogged = seconds;
  604. // convert to string
  605. char buf[16];
  606. String strTemp = dtostrf( sol_volts, 4, 1, buf);
  607. Serial.println(strTemp);
  608. // TCP connection
  609. String cmd = "AT+CIPSTART=\"TCP\",\"";
  610. cmd += "184.106.153.149"; // api.thingspeak.com
  611. cmd += "\",80";
  612. ser.println(cmd);
  613. if(ser.find("Error")){
  614. Serial.println("AT+CIPSTART error");
  615. return;
  616. }
  617. // prepare GET string
  618. String getStr = "GET /update?api_key=";
  619. getStr += apiKey;
  620. getStr +="&field1=";
  621. getStr += String(strTemp);
  622. getStr += "\r\n\r\n";
  623. // send data length
  624. cmd = "AT+CIPSEND=";
  625. cmd += String(getStr.length());
  626. ser.println(cmd);
  627. if(ser.find(">")){
  628. ser.print(getStr);
  629. }
  630. else{
  631. ser.println("AT+CIPCLOSE");
  632. // alert user
  633. Serial.println("AT+CIPCLOSE");
  634. }
  635. }